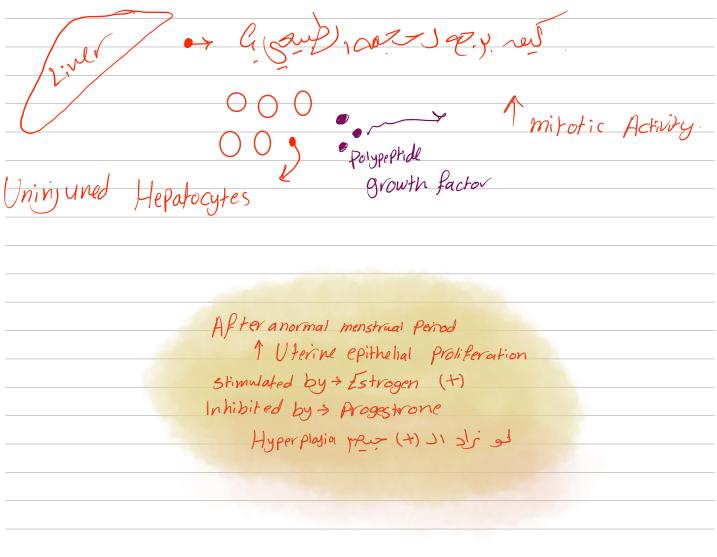
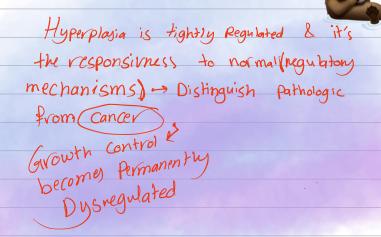

A da Ptations

Туре	Definition	Mechanism	Physiologic example	Pathologic example	Special points
. In the tissue	Increase in cell size A Organ Size - No new cells	1. Increased stimulation (Hormones) (Growth Foctor) 2. Increased demand Physiologic † Disease/ Abmamal Stimuli Pathologic Organ Dysfunction	 Physiologic hypertrophy of the uterus during pregnancy. (Estrogen) Hypertrophy of skeletal muscle In response to exercise. 	Increased workload on heart muscle like in HTN and Valves stenosis Tragment air on & Tragment air on	• Limited • Can Coexist with typerplana.
Atrophy	Decrease in cell size of constant const	 Decreased workload (like immobilization), denervation, ↓ 	1. Normal embryonic development 2. loss of harmonal stimulation in meno Pause	Atrophy as seen in the brain	 Cell loses function but it's not dead Autophagy

Mechanism of Hypertrophy

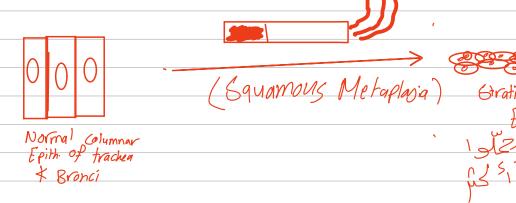

Mechanism of Hypertrophy


Mechanism of General Proteins of Contraction

2. Switch from Adult Contraction Proteins of Fetal

List aslprane of the interior of the proteins of the pro

Type	Definition	Mechanism	Physiologic example	Pathologic example	Special points
Hyperplasia In tiss my that and Copable of Replication	Increase in cell number	Differentiated Less diff. Celly Progenitor Celly	 Hormonal hyperplasia: female breast at puberty & during pregnancy (estrogen & progestrone). Compensatory (12hr) hyperplasia: Liver 	 Endometrial hyperplasia Benign (Androgen) prostatic hyperplasia Certain viral infections (Papilloma) Kin-warts) 	 Can occur together with hypertrophy A fertile soil for cancerous lesions.
Metaplasia	One adult cell type (epithelial or mesenchymal) is replaced by another adult cell type.	 Here a cell type is sensitive to a particular stress is replaced by another cell type better able to withstand the adverse environment. 			Often coexist with cancers



Pathologic HyperPlasar is a fertile Soil for Cancers-

Metaplasia:

It arise by the reprogramming of stem cells to differentiate along a new pathway &

not by a phenotypic change (trans-differentiation) of already differentiated cells.

Metaplasia here has survival advantages, but important protective mechanisms are lost, such as mucus secretion and ciliary clearance

Chronic gastri Reflux

hormal strotified Squamow epith. of Esophagus

(Intestinal Metaplasia)

gastric / Intestinal

Persistent metaplastic Changes

May predispose to Malignancy.

Accumulation

· Lysosome

7 1. Can Occur in the 7,2 to 3 > 11. Can be Harmless or Harmful

111. Synthesized by the same cell or other Celly

1. J Removal & degradation 20 1 Excessive Production of Endogenous Material

3. Deposition of pobnormal Exagenow making

Туре	Definition	Causes	Example	Special points
Lipids → Fatty changes	Any accumulation of triglycerides within parenchymal cells.	 Toxins Protein malnutritio n Diabetes mellitus Obesity Anoxia. 	Steatosis in liver → Alcohol abuse and diabetes associated with obesity are the most common causes of fatty change in the liver. Heart Skeletal MUSCIE kidreys	Called steatosis
Lipids → Cholesterol and Cholesteryl Esters	Phagocytic cells may become overloaded in different pathologic processes	Mostly increased intake or decreased catabolism of lipids.	Atherosclerosis	Atheroma
Glycogen	Excessive intracellular accumulation of glycogen		Uncontrolled DM \rightarrow abnormal glucose metabolism, glycogen accumulates in renal tubular epithelium, cardiac myocytes, and β cells of the islets of Langerhans.	• Glycogen also accumulates within cells → glycogen storage diseases.

• Piaments

Туре	Definition	Color	Example	Special points
Carbon	· Ubiq uitions + For Polytant · When Inhaled → Alveolar macrophages - by lymph → Lymph nodes	Black	Aggregates of the pigment blacken the draining lymph nodes and pulmonary parenchyma (called anthracosis	The most common exogenous pigment
Lipofuscin	Lipofuscin represents complexes of lipid & protein that are produced by the free radical-catalyzed peroxidation of polyunsaturated lipids of subcellular membranes.	Brownish-yellow	Lipofuscin granules in cardiac myocytes Liver Brain	 Not injurious, a marker of past free radical injury. In large amounts → brown atrophy
Melanin	Although melanocytes are the only source of melanin, adjacent basal keratinocytes in the skin can accumulate the pigment (e.g., in freckles), as can dermal macrophages.	Brown - black	Moles	Protect from UV

A hemoglobin-derived granular pigment that is golden yellow to brown. Accumulates in tissues when there is a local or systemic excess of iron. Iron is normally stored within cells in association with the protein apoferritin, forming ferritin micelles. Hemosiderin pigment represents large aggregates of these ferritin micelles, readily visualized by light and electron microscopy. **Pigments - Hemosiderin The iron can be unambiguously identified by the Prussian blue histochemical reaction Small amounts of this pigment are normal in the mononuclear phagocytes of the bone marrow, spleen, and liver, where aging red cells are normally degraded. Excessive deposition of hemosiderin, called hemosiderosis. More extensive accumulations of iron seen in hereditary hemochromatosis		
identified by the Prussian blue histochemical reaction Accumulates in tissues when there is a local or systemic excess of iron. Iron is normally stored within cells in association with the protein apoferritin, forming ferritin micelles. Hemosiderin pigment represents large aggregates of these ferritin micelles, readily identified by the Prussian blue histochemical reaction Small amounts of this pigment are normal in the mononuclear phagocytes of the bone marrow, spleen, and liver, where aging red cells are normally degraded. Excessive deposition of hemosiderin, called hemosiderosis. Hemosiderin pigment represents large aggregates of these ferritin micelles, readily	Pigments - Hemosiderin	- ≁Pigments - Hemosiderin
Iron is normally stored within cells in association with the protein apoferritin, forming ferritin micelles. Hemosiderin pigment represents large aggregates of these ferritin micelles, readily normal in the mononuclear phagocytes of the bone marrow, spleen, and liver, where aging red cells are normally degraded. Excessive deposition of hemosiderin, called hemosiderosis. More extensive accumulations of iron soon in heroditary homosphromatoris.		 identified by the Prussian blue
association with the protein apoferritin, forming ferritin micelles. - Excessive deposition of hemosiderin, called hemosiderosis. Hemosiderin pigment represents large aggregates of these ferritin micelles, readily More extensive accumulations of iron soon in heroditary homoshypmatoris.		normal in the mononuclear phagocytes of the bone marrow, spleen, and liver, where aging red cells are normally
Hemosiderin pigment represents large aggregates of these ferritin micelles, readily hemosiderosis. More extensive accumulations of iron soon in heroditary homoshromatosis	association with the protein apoferritin,	Excessive deposition of
aggregates of these ferritin micelles, readily		•
	aggregates of these ferritin micelles, readily	