

Charting New Horizons in Education

Pharmacogentics and pharmacogenomics

11

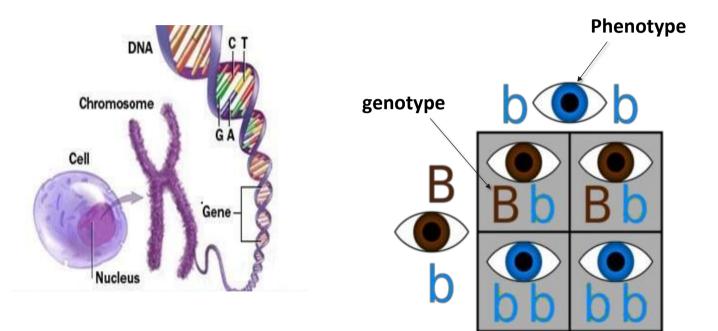
pharmacology

2

Created by: Dr.Farah Breik

Objectives

- •What is pharmacogenetics (pharmacogenomics)?
- •Importance of pharmacogenetics
- •Define genetic polymorphism
- •Types of genetic polymorphism
- •Polymorphism affecting pharmacokinetics
- •Polymorphism affecting pharmacodynamics
- Polymorphism affecting underlying disease and adverse drug reactions


Concepts: gene, chromosome, genotype and phenotype

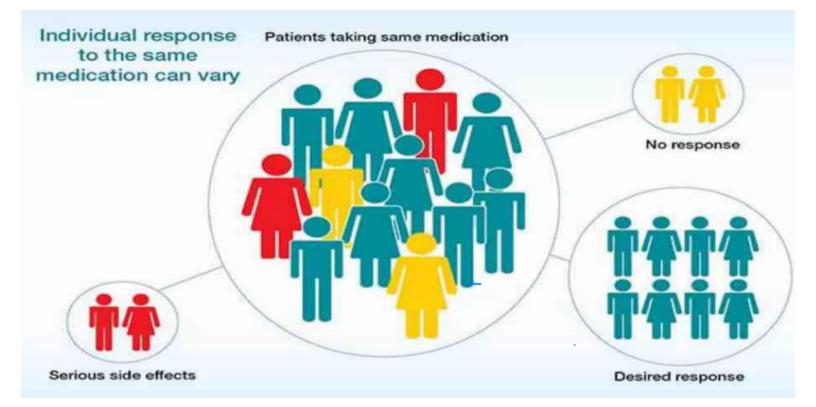
In human cells, genetic material is located in the nucleus and is referred to as the genome(23pair of chromosomes). Chromosome consist of double-helical DNA, which is made up of two strands of DNA. The building block of DNA is the nucleotide, which comprises a phosphate group(constant), a sugar group(constant), and a nitrogenous base(. The nitrogenous bases include adenine, thymine, cytosine, and guanine.

Function of a gene involves:

- mRNA synthesis from DNA (transcription).
- Translation of mRNA to assemble amino acids.
- Formation of a protein –coding of proteins (enzymes,hormones...etc) Proteins will do specific function

The phenotype is determined by genotype. الصفة الظاهرة :Phenotype

Pharmacogenomics & pharmacogenetics

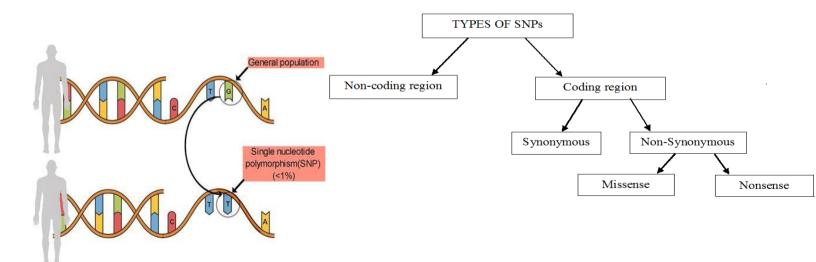

•Genomics – The study of genetic material found in a cell (DNA)

- •**Pharmacogenomics** is a branch of pharmacology concerned with using DNA data to explain individual variations in drug response.
- •**Pharmacogenetics** The study or clinical testing of genetic variation affecting individual patients different response to drugs

•Goal...

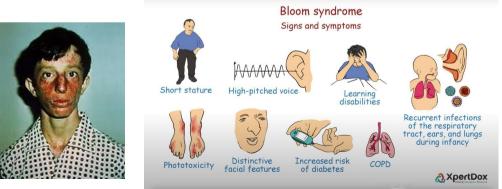
To develop precisely targeted, optimal drug therapy (personalized medicine)Minimizing drug related adverse effects

Personalized medicine: the tailoring of medical treatment to the specific characteristics of each patient. (right patient, right drug, right dose)


Genetic polymorphism

- •Variations in human genome that occurs in 1% of population
- •<u>Types of genetic polymorphism</u>:
- •1- Single nucleotide polymorphisms (SNPs)
- •2- Indel (insertion-deletion)

Single nucleotide polymorphisms (SNPs)


- •The most common variation in human DNA
- •Each SNP represents a difference in a single DNA building block, called a nucleotide
- •Example: the substitution of a C for a G in the nucleotide sequence AACGAT, thereby producing the sequence AACCAT.
- •SNPs in non-coding regions can manifest in a higher risk of cancer
- •SNPs in <u>coding regions</u>:
- •Silent substitutions do not result in a change of amino acid sequence (silent mutation)
- •Non-silent substitutions
- •<u>missense</u> single change in the base results in change in amino acid of protein and its malfunction which leads to disease
- •<u>nonsense</u> <u>mutation</u> in a sequence of DNA that results in a *nonsense codon* in the <u>transcribed mRNA</u>, nonfunctional protein product (e.g. <u>Cystic fibrosis</u> mutation in the <u>cystic fibrosis transmembrane conductance</u> <u>regulator</u> gene).

Types of SNPs

Indel (insertion-deletion)

- •an <u>insertion</u> or <u>deletion</u> of <u>bases</u> in the <u>genome</u> of an organism
- •Example:
- causes Bloom syndrome in the Jewish or Japanese population.

Pharmacogenomic polymorphism

- •Affected genes lead to different phenotypes with modified response and adverse effects to certain drugs:
- •1- Pharmacokinetic polymorphism
- •2- Pharmacodynamics polymorphism
- •3- Polymorphism modifying underlying disease

Polymorphisms modifying PKs

- Cytochromes P450 (P450s or CYPs) are a family of enzymes
- Mainly found within the endoplasmic reticulum and mitochondria of liver cells.
- They are also found in many other cells of the body.
- These membrane-bound proteins are involved in the metabolism of many harmful substrates, such as toxins.
- Of all the different CYP proteins that are present in the human body, 6 of them are involved in the metabolism of 90% of drugs.
- The most important are CYP3A4, CYP2C9, CYP2C19 and CYP2D6.
- Changes in genes controlling CYP enzymes can make them: more active or less active than normal, or completely inactive

Examples of pharmacokinetic polymorphism

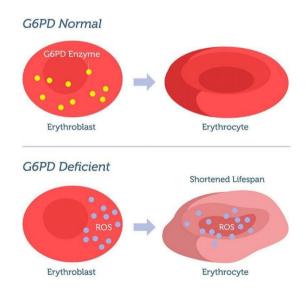
- <u>**Clopedogril**</u> (anticoagulant, inhibiting platelet aggregation): 85% metabolized by an esterase to inactive metabolite and 15% metabolized by CYP2C19 to active metabolite.
- CYP2C19 poor phenotype: poor anticoagulant action of clopedogril: blood clotting
- <u>Antidepressants:</u> metabolized by: CYP2D6:
- Poor phenotype: increased antidepressant toxicity
- Ultra-rapid phenotype: decreased efficacy

Succinylcholine (scoline) apnea

- SCH is **rapidly hydrolyzed** by **butyrylcholinesterase** (BCHE, also known as plasma cholinesterase and pseudocholinesterase), which is synthesized in the liver and present in plasma (duration of action: 5 min.).
- Succinylcholine or scoline apnoea, occurs when there are abnormalities in plasma cholinesterase and the body has difficulties in metabolizing the drug leading to prolonged muscle paralysis and respiratory failure (death).
- Treatment? Fresh blood transfusion

Rapid and slow acetylators of INH

- The rate of drug acetylation is influenced by genetic factors (hepatic acetyltransferase gene).
- Hepatic acetyltransferase metabolizes INH
- Individuals who are phenotypically slow acetylators are have a higher risk of hepatotoxicity than do rapid acetylators

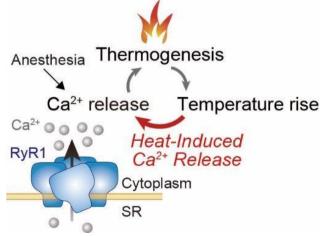

Polymorphisms modifying PDs

- Beta-Adrenergic Receptors Gene Polymorphisms alter response to bronchodilators
- Serotonine receptor gene polymorphisms affect response to antidepressant drugs

Polymorphisms modifying diseases and drug responses

- G6PD deficiency (Fauvism)
- Genetic disorder that causes G6PD deficiency
- More in males
- G6PD protect RBCs against oxidizing agents: antibiotics, antimalarial drugs (chloroquine), aspirin, some anti-cancer medicines and large doses of vitamin C, some foods, particularly fava beans, certain infections
- These agents destroy RBCs causing hemolysis and anemia which can be life-threatening.

G6PD deficiency (Fauvism)



Malignant hyperthermia (MH)

- MH is a type of severe reaction that occurs in response to particular medications used during general anesthesia (volatile anesthetic agents and succinylcholine) in susceptible individuals.
- Symptoms include muscle rigidity, fever, and tachycardia
- Complications can include muscle breakdown and high blood potassium
- Due to genetic mutations in RYR1 gene
- **Ryanodine receptor 1 (RYR1):** functions as calcium release channel in the sarcoplasmic reticulum
- In susceptible individuals, the medications induce the release of stored calcium ions within muscle cells.
- The resulting increase in calcium concentrations within the cells cause the muscle fibers to contract.
- This generates excessive heat and results in metabolic acidosis
- Treatment??? Dantrolene

Malignant hyperthermia

- **Dantrolene** is currently the only specific medication used for treating a malignant hyperthermia crisis
- Mechanism of action:
- Antagonizing the ryanodine receptors, which lessens the excitationcontraction coupling of muscle cells.

References

Lippincott's Illustrated Review

Pharmacology, 8th edition Lippincott Williams & Wilkins

Katzung by Anthony Trevor, Bertram Katzung, and Susan Masters . 16th edition McGraw Hill,

Rang & Dale's Pharmacology: by Humphrey P. Rang ; James M. Ritter ; Rod Flower Churchill Livingstone; 10th edition

«Wherever the art of medicine is loved, there is also a love of humanity.»

- Hippocrates-

