Lec8 Summary. T-cells, TCR, & antigen presentation

Created by; Dr. Mohammad Al-Zuraiqi

<mark>αß TCR</mark>

- Comprises 90-95% of blood T cells.
- Two polypeptide chains: α and β.
- CD Coreceptor Binding MHC:
 - CD4+ (Th) binds MHC II.
 - CD8+ (Tc) binds MHC I.
- TCR Complex:
 - Made of αß receptor, ζ chain, and two CD3 signaling proteins.
- Chain Structure:
 - One variable region
 - One constant region
 - Hinge region
 - Transmembrane segment
 - Cytoplasmic tail
- Chain Linking:
 - Covalent linkage by a disulfide bridge between extracellular cysteine residues.
- TCR Function:
 - Specifically recognizes peptide-MHC complexes.
- Hypervariable Regions:
 - Found on both Vα and Vß, similar to those of antibodies.
 - Located on the **Ag-binding site**, called **CDR**.
 - 3 CDR sites per each.

Costimulatory Receptors on T Cells

- Antigen Binding:
 - TCR CD4/8 binding to antigen-MHC complex on APCs provides the first signal.
- Coreceptor Binding:
 - **T cell coreceptors**: CD4 and CD8 proteins.
 - CD8 binds MHC class I.
 - CD4 binds MHC class II.
 - **CD3 and \zeta chain** contribute to signal transmission within T cells.
 - These receptors provide the **second signal** for **lymphocyte activation**.

- CD28:
 - Early accessory molecule inducing signaling.
 - Binds B7 on APCs, initiating T cell proliferation via IL-2 cytokine and receptor expression.
 - **CTLA-4 binds B7** post-antigen clearance, regulating **T cell activity** and leading to **T cell death**.
- **CD2**:
 - Glycoprotein on over 90% of mature T cells and NK cells.
 - Main ligand: LFA-3 (CD58).
 - Functions as a **signal transducer**.
- CD40L CD40 Interaction:
 - Occurs on B cells, essential for B cell activation and isotype switching.
- Signal 3 Cytokine Effect:
 - IL-2 growth factor from Th and Tc cells stimulates T cell and B cell proliferation.
- Outcomes Based on Signal Presence:
 - Absence of any signal leads to T cell anergy and tolerance.
 - **Presence of all signals** results in **T cell proliferation and differentiation** into **effector** and **memory cells**.
- Effector Cells:
 - CD4 cells differentiate into Th1, Th2, or Th17 lymphocytes.
 - CD8 cells differentiate into cytotoxic T lymphocytes (CTL).

<mark>T Cells Roles</mark>

- Involved in:
 - Defense against pathogens:
 - **Tc** cells target **intracellular pathogens**.
 - Th cells assist in extracellular pathogen defense.
 - Tumor immune response
 - Graft rejection
 - Autoimmune diseases

CD4+ Th Cells

- Characteristics:
 - CD4 marker (a glycoprotein) on T cells, representing 70% of peripheral T cells.
 - Central in **modulating immunity** through **cytokine secretion**:
 - **Th2**: Activates B cells and immunoglobulin secretion.
 - Th1: Activates macrophages and dendritic cells.
 - Th17: Induces cellular chemotaxis and inflammation.

Differentiation of Th1, Th2, Th17 Cells

- Activation:
 - Naïve CD4 T cells activated by APCs (antigen-presenting cells) in the secondary lymph node.
 - Activated CD4+ T cells then proliferate and differentiate into effector cells.
- Th2 Differentiation:
 - Mediated by CD4 binding with B cells as APCs in response to allergens, small extracellular microbes, or worms.
 - **Presence of IL-4** from B cells induces Th2.
 - Th2 cytokines (IL-4, IL-6) activate B cells, promoting antibody production.
- Th1 Differentiation:
 - Triggered by **Th binding to DCs** that secrete **IL-12 and IFN-gamma**.
 - Targets intracellular pathogens in macrophage vesicles.
 - Provides helper functions to APCs, especially macrophages and dendritic cells.
- Th17 Differentiation:
 - Stimulated by DCs secreting IL-6 and TGF-beta in response to extracellular bacteria and fungi.
- Treg Cells:
 - Suppress immune response and tumor activity.

Antigen Effect in Priming TH1, TH2, or TH17 Cells

- CD4 T Cell Differentiation:
 - **Nature and amount of ligand** during **primary stimulation** influences the **functional phenotype** of CD4 T cells.
- TH2 Differentiation:
 - Occurs when **B cells present low levels** of a **small antigen, toxin, or worm** that binds weakly to the T-cell receptor.
 - TH2 cells produce IL-4 and IL-5.
 - Active in:
 - Stimulating naive B cells to make antibodies.
 - Activating eosinophils.
 - Targets typically extracellular helminths or allergens.
- TH1 Differentiation:
 - Occurs with a high-density ligand that binds strongly to the T-cell receptor.
 - TH1 cells secrete IFN-gamma.
 - Most effective in activating macrophages to target intracellular pathogens in macrophage phagosomes.

Regulation Between TH2 and TH1 Subsets

- TH2 Cells:
 - **Produce IL-4**, which **inhibits TH1 activation** in macrophages, reducing **autoimmunity**.
- TH1 Cells:
 - Secrete IFN- γ , inhibiting IL-4 and TH2 growth, decreasing allergy.
- Balance and Effects:
 - TH1 Dominance: Increases autoimmunity, promotes cancer and allergy.
 - TH2 Dominance: Decreases autoimmunity.
 - **TH17**: Linked to **autoimmune diseases**.
- Therapeutic Potential:
 - **Cytokine manipulation** may help **control immune responses** by influencing the **TH1/TH2 balance**.

T-Helper	Cytokine	Function of Cytokine
TH2	IL-4	Leads to B cell activation and antibody secretion.
	IL-5	Activates eosinophils to react against worms.
	IL-10	Suppresses macrophages.
TH1	IFN-gamma	Activates CD8 T cells, macrophages, and NK cells for direct killing of infected cells.
	IL-2	Supports CD8 T cell activation and enhances immune response.
	lgG1, lgG3	Activates B cells to secrete opsonizing antibodies, enhancing phagocytosis.
		Helps in cell-mediated immunity and facilitates neutrophil activation.
TH17	IL-17	Recruits neutrophils and macrophages to the infection site.
		Induces inflammation, which may contribute to autoimmune diseases.

CD8 Cells

- Characteristics:
 - CD8 T cells express the CD8 molecule and represent 30% of peripheral T cells.
- Activation:
 - Naïve CD8 cells are activated by antigens on MHC class I molecules from:
 - Self or infected APCs (e.g., viruses, intracellular pathogens, or malformed tumor cells).
 - Activation requires **IL-12** and **IFN-gamma**.
- Function:
 - Kills infected cells (e.g., viruses, intracellular pathogens) and cancer cells.
 - Cytotoxic T lymphocytes (CTLs) eliminate infection reservoirs by destroying infected cells.
- Direct Activation:
 - Antigens are presented to CD8 cells along with type 1 interferon (IFN) from infected cells.
- Indirect Activation:
 - TH1 cells secrete IFN-gamma, stimulating CD8 cells.

Direct Killing by CD8 Cells

- Mechanisms:
 - Production of perforins and secretion of granzymes.
 - Induction of apoptosis via the FasL-Fas pathway.

Fas-FasL Pathway

- Function:
 - Fas-FasL binding activates caspases in the target cell, triggering apoptosis.
 - Important for:
 - NK and CD8 T cell killing of target cells.
 - T cell regulation.
 - Killing of T cells by NK cells (known as activation-induced cell death (AICD)).

Mutation Consequences:

- FAS/FasL mutation leads to Autoimmune Lymphoproliferative Syndrome (ALPS), characterized by:
 - Lymphocyte accumulation
 - Defective apoptosis
 - Humoral autoimmunity.

