Lec9 PART 1 Summary, T-cell mediated immune response

Created by; Dr. Mohammad Al-Zuraiqi

Cross Presentation

- Class I MHC Pathway for CD8+ T Cells
 - Requires protein antigens in the cytosol of infected presenting cells.
- Virus Infection and Antigen-Presenting Cells (APCs)
 - Viruses infect specific cell types and may be taken into APCs by **phagocytosis**.
 - APCs are not infected and do not synthesize viral antigens endogenously.
- Solution: Cross-Presentation
 - Dendritic cells **ingest infected cells, tumor cells, or proteins** expressed by these cells.
 - Antigens are initially on MHC class II molecules but are transferred to the cytosol.
 - Antigens enter the class I MHC pathway for recognition by CD8+ T cells and Th1 cells.

The Immunologic Synapse

- TCR Complex Recognition
 - When **TCR complex** recognizes **MHC-associated peptides** on an APC, multiple T cell proteins and signaling molecules gather at the T cell–APC contact site.
- Formation of Immunologic Synapse (SMAC)
 - The contact region between the T cell and APC is called the **immunologic** synapse or supramolecular activation cluster (SMAC).
- Key T Cell Molecules in the Synapse
 - **TCR complex** (includes TCR, CD3, and ζ chains).
 - CD4 or CD8 coreceptors.
 - Receptors for costimulators (e.g., CD28).
 - Enzymes and adaptor proteins associated with transmembrane receptor cytoplasmic tails.

Privileged Sites

- Locations with Limited Immune Response
 - Examples include the anterior chamber of the eye and testes.
- Mechanism of Immune Privilege
 - High levels of **inhibitory proteins** such as:
 - IL-10
 - TGF-β
 - Migration inhibition factor
 - Expression of FasL on cells in these sites helps prevent immune activation.

Antigen-Presenting Cells (APCs)

- Distribution and Types
 - Found in tissues, blood, and lymph nodes.
 - Include dendritic cells, macrophages, and B cells.
- Dendritic Cells
 - Primary activators of naive T cells.
 - Present a wide range of antigens, including viral, bacterial, and allergenic antigens.
- B Cells
 - Bind soluble, intact antigens and present them to T helper (Th) cells through MHC class II molecules.

Dendritic Cell Activation

- Immature Dendritic Cells
 - Located in tissues and infection sites.
 - Express low levels of MHC class I and II molecules and adhesion molecules.
 - Express high levels of phagocytic receptor PRRs
- Antigen Internalization
 - Occurs through:
 - Binding of antigens with PRRs.
 - Macropinocytosis.
- Maturation Process
 - After engulfing a pathogen, they become **mature dendritic cells** and:
 - Migrate to peripheral lymph nodes (LNs).
 - Lose phagocytic activity.
 - Increase adhesion molecules, MHC, and co-stimulatory molecules.
 - Secrete **chemotactic factors** to attract naive T cells to lymph nodes.

B Cells as APCs

- Surface Immunoglobulins (IgM or IgD)
 - Enable highly efficient binding and internalization of specific soluble antigens.
- Antigen Processing
 - Internalized antigens are processed in intracellular vesicles, binding to MHC class II molecules.
 - The MHC class II complex is then transported to the cell surface for recognition by Th2 cells.
- Efficiency
 - This process is highly **effective at low antigen concentrations** due to its specificity.

Memory T Cells

- Types of Memory T Cells
 - **CD4+ and CD8+ memory T cells (CD45RO+)** are divided into:
 - Central Memory T Cells: Express CCR7 and L-selectin; home primarily to lymph nodes.
 - Effector Memory T Cells: Lack CCR7 and L-selectin; home to peripheral sites, especially mucosal tissues.
- Function in Secondary Infection
 - Memory T cells in peripheral tissues can be directly activated by proinflammatory cytokines to initiate effector functions outside the draining lymphoid tissue.

Regulation of T Lymphocyte Responses

- Purpose of Regulation
 - To prevent tissue damage from overstimulation.
 - To prevent autoimmunity.
- Regulation Methods
 - CTLA-4 Expression: After antigen clearance, CTLA-4 replaces CD28 on T cells; binds B7 on APCs to inhibit T cell activity.
 - Activation-Induced Cell Death (AICD): Persistent T cell activation leads to cell death through Fas-FasL interactions on NK cells and target T cells.
 - **Passive Cell Death**: Occurs when the antigen is eliminated.
 - CD4 Regulatory T Cells (T regs): Induced in the presence of IL-10 and TGFbeta.
 - **PD-1 Engagement**:
 - PD-1 on T cells binds PD-L1 (on APCs and other tissue cells) or PD-L2 (mainly on APCs).
 - Binding leads to **T cell inactivation** or, rarely, conversion to **T reg cells**.

New T Cell Phenotypes: Regulatory T Cells (T regs)

- Subset
 - Derived from **CD4 T cells**.
 - Express FoxP3, CD25, and CD4 markers
- Types of Regulatory T Cells
 - Naturally Occurring T regs
 - Induced T regs: Formed in the presence of IL-10 and TGF-β.

Generation of T reg Cells

- Main Generation Sites
 - Generated by **self-antigen recognition** in the **thymus** (central tolerance).
 - Also formed by recognition of **self and foreign antigens** in **peripheral lymphoid organs** (peripheral tolerance).
- Differentiation
 - T regs differentiate from **CD4+ T cells**.
 - Some T reg cells require TGF- β and IL-2 for their generation.

Functions of T reg Cells

- Immunosuppressive Cytokine Production
 - Produce IL-10 and TGF- β to suppress immune responses.
- IL-2 Consumption
 - Due to high IL-2 receptor expression, T regs absorb IL-2, reducing proliferation and differentiation in other IL-2–dependent cells.
- Reduced APC Stimulation of T Cells
 - Binding of CTLA-4 on T regs to B7 molecules on APCs diminishes APC ability to stimulate T cells.
- Granzyme B Secretion
 - Secrete granzyme B, acting on activated T cells.

T reg Cytokines

- **TGF-**β
 - Inhibits **T cells** and **macrophages**.
- Interleukin-10 (IL-10)
 - Inhibits activated macrophages, dendritic cells, Th1 cells, and CD8 cells.
 - Blocks IL-12 production by dendritic cells and macrophages, indirectly inhibiting Th1 and CD8 cell activation.
 - Suppresses costimulatory molecule and class II MHC expression.

Inappropriate T Cell Activation

- T Cell Stimulation by Super Antigens
 - Super antigens cause non-specific activation of T cells, leading to massive cytokine release from macrophages.
- Causes of Super Antigen Activation
 - Super antigens include **exoproteins** such as:
 - Toxic shock syndrome toxin-1 (TSST-1)
 - Staphylococcal enterotoxins
 - Exfoliative toxins (ETA and ETB)
 - Leukocidin
 - Exotoxins A from Streptococcus pyogenes, causing toxic shock-like syndrome.
 - Other pathogens include **EBV** and **HIV**.

• Pathology of Super Antigens

- Super antigens bind inappropriately to the Vß domain of the TCR and MHC class II, activating a large number of T cells and causing high cytokine production.
- T cells with antigen-specific Vß domains are more common (10%) than those with both antigen-specific Vα and Vß TCRs (0.01%).

• Immunological Effects

- Elevated levels of IL-1, TNF-alpha, and IL-2 result from increased macrophage activation by T cells.
- Leads to symptoms like **fever**, **massive vascular leakage**, and **toxic shock syndrome (TSS)**.

Immunoglobulin Superfamily

- Members of the Immunoglobulin Superfamily
 - Antigen receptors of T and B cells
 - **CD3**
 - Co-receptors CD4 and CD8
 - Most Fc receptors
 - CD28 and B7 adhesion molecules
 - Cytokine receptors
 - MHC molecules